Радиоактивная стерилизация

В нашем сознании прочно укрепилось понимание, что техногенная радиация опасна для здоровья. Но так ли это на самом деле? Об этом не принято широко говорить, но энергия атома активно используется во многих промышленных отраслях. И не только для получения дешевой электроэнергии! Сегодня в 60 странах мира немалая часть пищевых и сельскохозяйственных продуктов стерилизуется с помощью радиации, а полимеры для покрышек и электрических проводов упрочняются на электронных облучателях.

В чем суть технологии?

В основе радиационной технологии лежит использование энергии ионизирующего излучения, образующегося при распаде изотопов радиоактивного элемента или при бомбардировке вещества ускоренными электронами. Проникая внутрь живого микроорганизма, бета- и гамма-частицы убивают вредные патогенные микроорганизмы, инициируют протекание определенных химических реакций, подавляют биологические процессы в пищевых продуктах и изменяют физико-химические свойства полимерных материалов.

При этом ни один из видов ионизирующего облучения не делает опасными обрабатываемые продукты и материалы. Поэтому радиационная технология успешно применяется при проведении нескольких технологических процессов:

  • стерилизации;
  • структурирования;
  • отверждения и прививки.

В качестве радиационных облучателей применяются источники γ-излучения от изотопов цезия-137 и кобальта-60, рентгеновское излучение от установок с энергией менее 5 мегавольт, пучки электронов высокой активности, генерируемых электронными ускорителями в интервале энергий до 10 мегавольт.

Несмотря на то, что Россия первой использовала ионизирующее облучение для дезинфекции посевов (в 1958 году посевное зерно и картофель, ввозимые из Канады и загрязненные долгоносиком, были обработаны на ионизирующих облучателях), технология не нашла широкого применения в нашей стране. Наибольшее количество облучателей расположено в Китае (40%) и США (39%), в России лишь планируется создать один центр по радиационной обработке. Только с 1 января 2016 года заработал ГОСТ ISO 14470-2014, разрешающий стерилизовать пищевые продукты электронными и ионизирующими облучателями, но до сих пор ГОСТы для конкретных продуктов не разработаны.

Интересный факт

По данным ФАО ООН, в Европе ежегодно изготавливается и реализуется свыше 200 тысяч тонн продуктов, простерилизованных облучателями. В Канаде радиацией обеззараживают замороженных цыплят, в Нидерландах – устрицы и лягушачьи лапки. В Австралии с 1979 года облучают замороженных креветок в промышленных масштабах. В США каждый год с помощью радиации стерилизуется свыше 100 миллионов килограммов пищевых продуктов, среди которых: мясо (фарш), овощи,фрукты, какао, кофе, яйца, овсяные хлопья, пиво, консервы, приправы и сгущенное молоко.

Сферы использования радиационного облучения

  1. Производство автомобильных покрышек для колес.

Крупные изготовители автомобильных покрышек США, Франции и Японии применяют радиацию для структурирования невулканизированной резины (радиационную вулканизацию). При этом улучшаются ее механические свойства, повышается усталостная прочность и износостойкость.

  1. Упрочнение телефонных кабелей.

С помощью радиации обрабатываются полимеры, идущие на изготовление изоляции для проводов и кабелей. После облучения оболочка приобретает два важных качества: не «течет» при повышенной температуре и при увеличении порога температуры плавления приобретает свойство резины. Такие изоляционные характеристики важны при обустройстве внутренних электрических схем звукового и электронного оборудования, линий электропередач, а также востребованы в авиационной, автомобильной, и судостроительной промышленности. К сожалению, радиационная технология не применима к кабелям высокого напряжения, поскольку ограничивается проникновение электронов. Поэтому многие ведущие концерны, специализирующиеся на выпуске проводов и кабелей, помимо облучателей используют линии химического структурирования.

  1. Дезинсекция зерна

В основе многих методов по очистке зерна лежит использование стерилизующего эффекта γ-излучения (радиационная дезинсекция). Большинство насекомых-вредителей после облучения дозой 100-200 Гр становятся стерильными и спустя 2-3 недели погибают. Качество риса, кукурузы, пшеницы, гречихи и другого зерна не ухудшается, облучение частично защищает зерновые запасы от повторного заражения, поскольку при спаривании со стерильными самками, которые еще могут остаться живыми, плодовитость особей резко падает.

  1. Стерилизация кормов для животных

Технология радиационной обработки кормов и кормовых добавок для животных развита во многих странах, особенно в Израиле, и считается достойной альтернативной пропионовой кислоте. Высокие дозы γ-облучения применяются при получении кормов для лабораторных животных, а низкие дозы – для сельскохозяйственных животных. В процессе обработки продукция быстро и надежно очищается от сальмонеллы, трихинелл и других патогенных микроорганизмов.

  1. Дезинфекции и стерилизации медицинских изделий

Радиационная стерилизация медицинских изделий на промышленном уровне начала использоваться в 50-60-х годах во Франции, США, Австралии и Великобритании. И дело не только в том, что метод позволяет быстро обеззараживать немалые партии шприцов, катетеров и наборов для переливания крови, а то, что изделия могут стерилизоваться в упаковках, в результате чего успешно решается проблема повторного загрязнения.

Свою эффективность доказала радиационная обработка медицинской одежды, изготовленной из нетканого пластического материала, – бахил, салфеток, наборов для операций, хирургических костюмов. В сравнении с альтернативным методом, в процессе которого используется специальный газ, уровень стерильности после облучения впечатляет – 106 КОЕ (1 бактерия) на миллион изделий. При этом не нужно держать изделия в нагретом виде восемь часов и постоянно вентилировать производственное помещение, где проводится дезинфекция.

  1. Пищевое производство

После того, как выяснилось, что стерилизация сернистым газом овощей и фруктов вредит озоновому слою и нарушает экологическое равновесие, технология лучевой обработки пищевых продуктов гамма-облучением стала использоваться во всем мире. Поскольку эффект стерилизации достигается при обычной температуре воздуха и не приводит к нагреву продуктов, способствуя сохранению их свежести, ее назвали холодной пастеризацией. Технология успешно применяется для различных целей:

  • удлинение сроков хранения продукции;
  • подавление процесса прорастания клубней, корнеплодов, луковиц;
  • ингибирование вредных патогенов в пищевых продуктах;
  • стерилизация или уничтожение патогенных бактерий и паразитов;
  • снижение количества вирусов;
  • проведение фитосанитарной обработки.

Многие страны накопили многолетний опыт безопасного использования радиационной обработки свыше 68 видов пищевых и сельскохозяйственных продуктов. В Америке и Европе ее применяют в промышленных масштабах на протяжении последних десятилетий.В основном, с целью консервации и продления срока хранения облучают полуфабрикаты, мясо, рыбу, морепродукты, картофель, концентраты фруктовых соков, ягоды и фрукты в весенне-летнее время.

Ионизирующее излучение подавляет прорастание клубней и луковиц. Воздействуя на обменные процессы, радиация увеличивает время хранения до одного года и более при температуре воздуха 6-8 градусов. При этом радиация воздействует на кожуру корнеплодов, не затрагивая запасающие ткани, сохраняя как их вкус, так питательную ценность.

Международная маркировка облученных продуктов

Чтобы потребители могли выбрать между облученным и необлученным продуктом, во многих странах была принята международная маркировка продуктов, обработанных ионизирующим излучением, – логотип «Radura-logo» (радура). В некоторых государствах логотипы на этикетках пищевых продуктов сопровождаются дополнительными надписями:»Treated with ionizing energy», «Treated by irradiation» или «Treated with radiation»(обработано радиацией), или надписи заменяют знак.

Радиоактивная пастеризация: безопасна или нет?

Споры о безопасности или вредоносности радиоактивной обработки продуктов были прекращены в 1980 году. Сразу три авторитетные организации: МАГАТЭ, ВОЗ и ООН на основании анализа результатов многочисленных исследований, сделали заключение о безопасности пищевой продукции для человека, облученной дозой до 10 кГр.

Советские ученые института питания АМН СССР в ходе опытов, в процессе которых собакам полтора года скармливалось мясо, облученное дозами радиации 0,6-0,8 мРад, неблагоприятных влияний не выявили. Аналогичные эксперименты с мышами, крысами, собаками и обезьянами проводились 30 исследовательскими лабораториями Америки. Пищевые продукты питания (21 вид), обработанные дозам 2,8 мРад и 5,58 мРад, давались подопытным животным в течение продолжительного времени, в результате чего отклонений в их здоровье ученые не обнаружили. Исследования на добровольцах, кратковременно питавшихся обработанной радиацией пищей, также не выявили опасных свойств у использованных продуктов, подвергшихся γ-облучению, и их отрицательного воздействия на организм человека.

Таким образом, было доказано, что продукты питания после облучения не меняют вкусовых и питательных качеств, не оказывают негативного влияния на здоровье и репродуктивную систему человека. С одной лишь поправкой – доза гамма-излучения не должна превышать установленные нормативы, иначе лучевая обработка приведет к накоплению радионуклидов в пище.

Сегодня появились новые сведения о том, что радиоактивная пастеризация вызывает образование свободных радикалов, которые относятся к мутагенам и канцерогенам. Но, как свидетельствуют проведенные исследования, их доля мала и не превышает количества, образующегося при обычной обработке продуктов.

Радиационное облучение: перспективы на будущее

Поскольку холодная пастеризация удешевляет продукцию консервной промышленности и позволяет вместо металлических банок использовать пластиковые контейнеры, с ее помощью можно получать мясные и колбасные изделия, упакованные в герметичную пленку и способные сохраняться до 3-х месяцев при обычных температурах.

За счет химической привязки активных веществ к фиксированной среде, с помощью радиационного облучения можно получать ферменты и лекарства, которые способны поддерживать высокую активность в течение долгого времени и, таким образом, иметь более длительный срок хранения.

Не менее актуально использование гамма-облучения в синтезе биологически активных полимеров, которые могут применяться при производстве имплантатов и медицинских устройств, рассчитанных на длительный контакт с тканями.

Кроме того, проведены успешные эксперименты в США и Германии по радиационной очистке сточных вод и использования отстоя в качестве удобрения или корма для жвачных животных. Полученные кормовые добавки были полностью очищены от возбудителей инвазивных и инфекционных заболеваний, не обладали токсичным действием.

Паровая стерилизация изделий медицинского назначения в лечебно-профилактических учреждениях

В профилактике внутрибольничных инфекций (ВБИ) с парентеральным механизмом передачи в ЛПУ ведущая роль отводится стерилизации изделий медицинского назначения (ИМН). От качества стерилизации ИМН напрямую зависит успех лечебно-диагностического процесса. На качество стерилизации влияют многие факторы. Среди них важнейшими являются форма организации стерилизационных мероприятий, используемое оборудование, квалификация персонала.

В российских медицинских учреждениях для стерилизации применяют в основном термические методы — паровой и сухожаровой. Причем наиболее надежным является паровой метод.

Основными факторами, определяющими эффективность паровой стерилизации, являются температура и продолжительность воздействия насыщенного пара при стерилизации, полнота удаления воздуха из камеры и стерилизуемых изделий, конфигурация и масса изделий, количество микроорганизмов на стерилизуемых изделиях (микробная обсемененность) и др. Обеспечение условий эффективной стерилизации во многом зависит от типа парового стерилизатора, от применяемого стерилизационного цикла, средств контроля критических параметров стерилизации.

Существуют различные способы удаления воздуха из паровой камеры. В современных медицинских стерилизаторах применяются гравитационный и форвакуумный способы. Соответственно, паровые стерилизаторы подразделяются на гравитационные и форвакуумные.

Гравитационные стерилизаторы (с удалением воздуха продувкой паром)

В России до 1989 г. паровая стерилизация изделий медицинского назначения проводилась в гравитационных стерилизаторах в соответствии с ОСТ 42-21-2-85.

В 1989 г. в соответствии с ГОСТ 19569-891 были введены пять новых (т. н. коротких) режимов паровой стерилизации ИМН.

По данному стандарту в стерилизаторах с объемом камеры 100 л и более удаление воздуха должно осуществляться только методом пульсирующей (форвакуумной) откачки. Требования стандарта не распространяются на стерилизаторы, выпущенные и находящиеся в эксплуатации до 1996 г. С 1996 г. в ЛПУ для стерилизации ИМН должны были вводиться в эксплуатацию только форвакуумные стерилизаторы.

Безопасный ресурс эксплуатации гравитационных стерилизаторов — 10 лет, соответственно, к 2006 г. все гравитационные паровые стерилизаторы с объемом стерилизационной камеры 100 л и более, выпущенные до 1996 г. и применяемые для стерилизации ИМН, должны быть заменены форвакуумными паровыми стерилизаторами.

По ГОСТ Р 13683-20022 гравитационные стерилизаторы предназначены для стерилизации изделий без пор и внутренних полостей. Такие стерилизаторы рекомендованы для стерилизации герметично закупоренных флаконов с растворами.

К сожалению, в российских медицинских учреждениях для стерилизации ИМН до сих пор в основном применяются старые стерилизаторы с гравитационным способом удаления воздуха: через продувочный клапан в нижней части стерилизатора удаляется воздух, более тяжелый по сравнению с паром, который поступает через клапан в верхней части камеры. Пар постепенно заполняет камеру, замещая воздух. К этому типу относятся отечественные стерилизаторы ВК-75, ГК-100, ГК-100-3, ГК-100-ЗМ, ГП-400, ГПС-560, ГПД-700, ЦСУ-1000-0.

Гравитационные стерилизаторы не соответствуют современным требованиям по таким параметрам, как обеспечение эффективности удаления воздуха, эффективность стерилизации, увлажненность изделий после стерилизации, отсутствие средств контроля и документирования процесса, а также запрограммированных циклов стерилизации.

Большим недостатком морально устаревших гравитационных стерилизаторов является отсутствие средств эффективной сушки изделий после стерилизационной выдержки. В таких стерилизаторах увлажненность хлопчатобумажных изделий после сушки при включенном конденсаторе или эжекторе3 составляет 3-5%, в то время как она не должна превышать 1%. Для влажных ИМН существуют риск повторной кантоминации и вероятность использования нестерильных изделий. В некоторых стерилизаторах, например ВК-75, ГК-100, совсем не предусмотрена сушка изделий после стерилизации. При замене физически изношенного (с выработанным ресурсом) и морально устаревшего оборудования в первую очередь необходимо заменять паровые стерилизаторы без средств послестерилизационной сушки.

В гравитационных стерилизаторах за счет недостаточного удаления воздуха наблюдается очень медленный прогрев пористых изделий — до 25 мин от начала стерилизационной выдержки. Поэтому в таких стерилизаторах используют только «длинные» режимы стерилизации — «120+2°С, 45 мин», «132±2°С, 20 мин».

Заменить сразу все гравитационные паровые стерилизаторы на форвакуумные по всей территории России невозможно. Они заменяются по мере физического износа и появления финансовых средств у ЛПУ. Для обеспечения надежной стерилизации в гравитационных стерилизаторах необходимо:

  • обеспечить эффективное удаление воздуха из стерилизационной камеры, не менее 10 мин осуществляя продувку паром в режиме «120+2°С, 45 мин», а при режиме «132±2°С, 20 мин» — длительность продувки увеличивается до 15 мин;
  • проводить периодический контроль микробиологической эффективности стерилизации с помощью Тест-ИБ4;
  • регулярно проводить периодический контроль удаления воздуха из камеры стерилизатора с помощью Тест-ИХ5; по стандарту ГОСТ Р ИСО 13683-2000 такой контроль дол жен проводиться не менее одного раза в неделю;
  • ввести контроль увлажненности ИМН после стерилизации по методике ГОСТ Р 51935-2002.

Форвакуумные стерилизаторы (принудительное удаление воздуха)

По стандарту ГОСТ Р ИСО 13683-2000 для стерилизации изделий из пористых материалов, имеющих пустоты, откуда удаление воздуха затруднено, необходимо использовать только форвакуумные стерилизаторы. Большинство изделий медицинского назначения изготовлены из пористых материалов (текстильные ткани, белье, перевязка, ватные шарики и тампоны), или имеют внутренние полости и каналы (катетеры, трубки, отсосы и пр.). Соответственно, для их стерилизации необходимо использовать только форвакуумные стерилизаторы.

Примером форвакуумных стерилизаторов являются такие отечественные стерилизаторы, как ГКД-560, ГЦЦ-400-3, ГК-100-4, ГК-100-5. С 01.07.03 постановлением Госстандарта России от 06.09.02 № 327-ст введен в действие ГОСТ Р 51935-20026. Этим же постановлением с 01.07.03 отменено действие ГОСТ 19569-89 на территории РФ, в т. ч. в части режимов стерилизации. Стандарт — ГОСТ Р 51935-2002 устанавливает общие технические требования к стерилизаторам и определяет методы их испытаний. Этот стандарт распространяется на стерилизаторы изделий медицинского назначения, имеющие объем стерилизационной камеры более 54 л, независимо от метода удаления воздуха. Стандарт не распространяется на стерилизаторы, предназначенные для стерилизации растворов (лекарственных средств и питательных сред), для обеззараживания и дезинфекции.

В новом стандарте ГОСТ Р 51935-2002 регламентируются только температурные режимы стерилизации: 121+3°С, 126+3°С, 134+3°С, а длительность стерилизационной выдержки и все параметры стерилизационного цикла определяются в каждом ЛПУ для конкретного вида стерилизуемого изделия исходя из требований, изложенных в ГОСТ Р ИСО 13683-2000 и ГОСТ Р 51935-2002.

В соответствии с ГОСТ Р 51935-2002 при паровой стерилизации в целях обеспечения качества стерилизации ИМН необходимо соблюдать следующие требования:

  1. В самой трудностерилизуемой точке загрузки (в геометрическом центре стандартной контрольной упаковки) в полностью загруженной стерилизационной камере независимо от длительности стерилизационной выдержки должны быть соблюдены условия: 121°С в течение не менее 15 мин, или 126°С — не менее 10 мин, или 134°С — в течение не менее 3 мин.
  2. Необходимо обеспечить микробиологическую эффективность стерилизации самой труностерилизуемой загрузки — инактивацию биологических индикаторов на основе спор Bacillus stearothermophilus в геометрическом центре стандартной контрольной упаковки.
  3. Увлажненность изделий не должна превышать 1%.

По новым требованиям в каждом ЛПУ для конкретного стерилизатора должны быть определены такие стерилизационные циклы, которые позволят обеспечить перечисленные требования. В первую очередь, это кратность вакуумной откачки воздуха из камеры стерилизатора (должно быть не менее 3 откачек!), длительность стерилизационной выдержки и послестерилизационной сушки (табл.).

Значения критических параметров стерилизационной выдержки по разным нормативным документам

Вид стерилизуемых изделий Значения критических параметров стерилизационной выдержки по ГОСТ 19569-89 (отменен) Значения критических параметров стерилизационной выдержки по ГОСТ Р 51935-2002 (новый)
регламентируется регламен­тируется определяется при валидации
t,°C время, мин t,°C время, мин
Простые изделия в однослойной упаковке или изделия без упаковки

121+1

126+1

134±1

121+3

126+3

134+3

3,5

Сложные изделия в упаковке, в стерилизационных коробках

121+1

126+1

134+1

121+3

126+3

134+3

Объемные пористые изделия в упаковке

121±1

126±1

134±1

121+3

126+3

134+3

Например, при стерилизации простых непористых изделий без полостей, без упаковки или в однослойной упаковке могут быть использованы режимы стерилизации «121+3°С, 15 мин»; «126+3°С, 10 мин»; «134+3°С, 3,5 мин». При стерилизации сложных изделий в упаковках применяются режимы «121+3°С, 20 мин», «126+3°С, 12 мин», «134+3°С, 5 мин». При стерилизации объемных пористых изделий или изделий с длинными каналами (трубок) длительность стерилизационной выдержки обычно увеличивают, например: «121+3°С, 25мин»,»126+3°С, 15мин»,»134+3°С, 7 мин». Длительность стерилизационной выдержки (режима стерилизации) для каждой температуры применительно к каждой группе (каждому типу) загрузки определяется в результате валидации. В результате валидации должна определяться и система стерилизационных мероприятий, которая состоит из предстерилизационной дезинфекции и очистки, упаковки изделий, стерилизации, перевозки, хранения и производственного контроля соблюдения и выполнения этих мероприятий. Правила, порядок и периодичность производственного контроля определены приказом Минздрава СССР от 03.09.91 № 254.

Выводы

  1. На современном этапе для паровой стерилизации изделий медицинского назначения по российским нормативным документам разрешается использовать только форвакуумные стерилизаторы с температурными режимами стерилизации 121+3°С, 126+3°С, 134+3°С. В ближайшие годы основной парк паровых гравитационных стерилизаторов должен быть заменен на стерилизаторы нового поколения — форвакуумные.
  2. Для обеспечения условий эффективной стерилизации в гравитационных стерилизаторах до их замены на форвакуумные необходимо:
  • строго соблюдать технологию продувки стерилизационной камеры насыщенным паром. Для режима стерилизации «120+2°С, 45 мин» стерилизационная камера продувается паром в течение не менее 10 мин, а для режима «132±2°С, 20 мин»
  • не менее 15 мин;
  • регулярно проводить периодический контроль микробиологической эффективности стерилизации с помощью Тест-ИБ;
  • ввести периодический контроль удаления воздуха из стерилизационной камеры с помощью Тест-ИХ;
  • обеспечить эффективную послестерилизационную сушку.

    ЛИТЕРАТУРА

  1. ГОСТ 19569-89. Стерилизаторы паровые медицинские. Общие технические условия и методы испытаний. Госстандарт СССР, 1989 (отменен).
  2. ГОСТ Р ИСО 13683-2000. Стерилизация медицинской продукции. Требования к валидации и текущему контролю. Стерилизация влажным теплом в медицинских учреждениях. Госстандарт России, 2000.
  3. В качестве эжектора в паровых стерилизаторах используется водоструйный насос, в котором при большой скорости движения воды в трубке в боковом ответвлении создается разряжение, в результате чего из стерилизационной камеры удаляется воздух или пар.
  4. См.: Инструкция Минздрава РФ от 18.12.03 № 11-7/18-09.
  5. См.: Там же.
  6. ГОСТ Р 51935-2002. Стерилизаторы паровые большие. Общие технические требования и методы испытаний. Госстандарт России, 2002.